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Frequency locking without phase locking of two coupled nonlinear oscillators is experimentally

demonstrated. This synchronization regime is found for two coupled laser modes, beyond the phase-

locking range fixed by Adler’s equation, because of a resonance mechanism. Specifically, we show that the

amplitudes of the two modes exhibit strong fluctuations that produce average frequency synchronization,

even if the instantaneous phases are unlocked. The experimental results are in good agreement with a

theoretical model.
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Synchronization, i.e., the ability of coupled oscillators to
lock to a common frequency, is a general and ubiquitous
feature of nature, since it occurs for biological clocks,
chemical reactions, mechanical or electrical oscillators,
and lasers, to mention just some well-known examples
[1]. When the amplitude of the oscillations is constant,
the two coupled oscillators can be described by a single
equation for the relative phase �:

_�

2�
¼ ��� fA sin�; (1)

where �� is the detuning between the oscillators’ frequen-
cies and fA is the coupling strength expressed in frequency
units. Equation (1) was originally derived by Adler [2] for
an electrical oscillator driven by an external reference
and has proven useful ever since in a broad variety of
situations. Recent examples include biological oscillators
[3], excitable dynamics of sensing microparticles [4], or
quantum dot lasers with an injected signal [5]. The Adler
equation shows that the behavior of two coupled oscillators
depends on the ratio of �� to fA. If j��=fAj � 1, a stable
stationary solution of Eq. (1) exists, and the two oscillators
are phase locked. Conversely, if j��j exceeds the value of
fA, the two oscillators cannot synchronize, and their rela-
tive phase drifts indefinitely in time.

The Adler equation has been well verified, in the limit of
weak coupling and detuning, for coupled class-A lasers [6].
On the other hand, theoretical investigations of injected
class-B lasers [7,8] pointed out that Eq. (1) needs to also
include the amplitude dynamics. This increased dynamical
complexity results in the existence of an intermediate
regime between phase locking and phase drift. In this
regime, called phase entrainment, the relative phase is
not stationary; however, it remains bounded. This means
that the average frequencies of the oscillators are locked.
Although phase entrainment, i.e., frequency locking

without phase locking, is a universal kind of synchroniza-
tion (predicted for instance in coupled Van der Pol oscil-
lators [9]), no experimental evidence of this behavior has
been reported, presumably because a clear discrimination
from standard frequency locking is delicate. In this Letter,
we show that lasers constitute a convenient experimental
system to uncover phase entrainment dynamics. We have
measured the optical phase between two coupled laser
fields and found that it is bounded, i.e., that average
frequencies are synchronized, beyond the limit for phase
locking fixed by the Adler equation. Our experimental
observation is strongly linked to the existence of an intrin-
sic time scale TR ¼ 1=fR characteristic of class-B dynam-
ics, with fR the relaxation oscillation frequency [6]. We
have found that synchronization extends beyond the Adler
boundary when the two time scales ruling coupled class-B
lasers dynamics, i.e., TR and TI ¼ 1=��, are close. Near
resonance, the laser fields are very sensitive to the cou-
pling, and as a result average frequency synchronization is
observed for very weak coupling.
Our experimental scheme is described in Fig. 1(a). We

use a two-frequency diode-pumped solid-state laser
(Nd3þ:YAG laser emitting at the wavelength of 1064 nm).
Such lasers provide two tunable single-mode laser fields,
corresponding to the two polarization eigenmodes of the
laser cavity [10]. The key feature of this system in the
present context is that the frequency difference ��0 ¼
�y � �x of the free-running Ex and Ey laser fields is

intrinsically very stable, the two laser fields being defined
by the same optical cavity. Furthermore, ��0 is precisely
tunable using birefringent intracavity elements (not
shown), allowing us to explore the regime of small detun-
ing close to fR. We set ��0 ¼ 200 MHz in order to
eliminate coherent effects in the cross saturation of the
active medium; under this condition, each laser field inter-
acts with its own population inversion reservoir [11]. The
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two laser fields are optically coupled by a feedback cavity
including a Bragg cell that shifts the diffracted optical
frequencies by an amount of fAO [12], and a quarter-
wave plate that flips the x polarization into a y polarization
after reflection on the feedback mirror. The Bragg driving
frequency fAO is tunable around 100 MHz. As a result, the
x-polarized field is reinjected in the y-polarized field, after
its frequency has been shifted by 2fAO. The detuning�� is
then defined as �� ¼ ��0 � 2fAO. Figure 1(b) depicts the
relevant frequencies, among which is the relaxation oscil-
lation frequency fR. The reinjected optical power (�10�5

of the power of a laser mode) is fixed in order to have a
phase-locking range fA ¼ 0:8fR, with fR ¼ 70 kHz.

When �� � fR, the frequency-shifted, polarization-
rotated x field resonantly excites the relaxation oscillations
of the y field. As a result, important fluctuations appear in
the time series of the beat signal IðtÞ / jEx þ Eyj2. As an
illustration, we show a self-pulsing time series occurring
for �� ¼ 1:05fR [Fig. 2(a)], and a chaotic time series
occurring for �� ¼ 0:85fR [Fig. 2(b)]. Similar intensity
instabilities have attracted much interest and have been
reported extensively [13,14]. However, the relative phase
dynamics when the intensity goes unstable has received
scarce attention. In our scheme we can have easy access to
the relative optical phase. To this end, we let the x and y
laser fields interfere on a fast photodiode after a polarizer.
If the y field is locked at the frequency �x þ 200 MHz, we
expect that the beat signal IðtÞ contains a fast 200 MHz

oscillation, phase locked to the second harmonic of the rf
signal driving the Bragg cell. The 200 MHz oscillation will
be strongly, but comparatively very slowly, modulated by
the intensity fluctuations occurring over much longer time
scales �TR. Therefore, the measure of the phase � of the
interference signal, relative to the phase of the second
harmonic of the rf drive, gives us access to the phase of
the y field relative to the reinjected x field. Using a fast
digital oscilloscope (40 GS=s), we are able to obtain histo-
grams of the relative phase � between the photodiode
signal and the drive. The raw data are presented in Fig. 3.
A single measure of the phase� is obtained measuring the
average value of� over 100 periods, i.e., for a time trace of
500 ns; each histogram contains 5000 phase measure-
ments. Figure 3(a) shows a phase histogram when �� ¼
0:3fA, inside the Adler locking range. We obtain a rela-
tively narrow peak, whose width is in agreement with an
independent measure of the differential frequency drift of
the laser fields, which is equal to 0:4 kHz=s. This noise is
due to technical imperfections (mechanical and pump-
induced drifts). For �� ¼ 2 fA, well outside the Adler
locking range, the relative phase drift results in a flat
histogram [Fig. 3(b)]. Finally, for �� ¼ 1:33fA, outside
the Adler locking range, we obtain a larger histogram than
in Fig. 3(a), but the relative phase remains trapped in a
bounded region of the ½��;�� interval [Fig. 3(c)], indicat-
ing that synchronization occurs even beyond fA. This
histogram is consistent with a time-dependent, bounded
phase, which is the behavior expected from modeling, as
we show below. We stress that bounded phase dynamics

FIG. 2 (color online). (a),(b) Experimental time series
of IðtÞ, for �� ¼ 1:05fR and �� ¼ 0:85fR, respectively. (c),
(d) Corresponding time series of IðtÞ obtained by numerical
integration of Eqs. (2)–(5).

FIG. 1. (a) Experimental scheme. A dual-frequency laser
(DFL) emits two orthogonally polarized, single-mode, single-
frequency laser fields with frequencies �x and �y. The x field is

reinjected into the y field after its frequency has been shifted by
2fAO and its polarization rotated by a quarter-wave plate (PR).
The beat signal IðtÞ is detected after a polarizer (P).
(b) Frequency scheme. The x field and its relaxation oscillation
sidebands at �fR are frequency shifted in order to be quasire-
sonant with the y field.
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occurs when the intensity is strongly modulated [see
Fig. 3(d), presenting the time series of IðtÞ and the
corresponding power spectrum]. Bounded phase was
even observed when the intensity becomes chaotic, as in
Fig. 2(b).

These experimental findings can be compared to the
predictions of a two-mode rate equation model [10]. An
Adler-type equation for the relative phase � between the
fields can be derived in the form

_�

2�
¼ ��� fA

ffiffiffiffi

Ix
Iy

s

sin�: (2)

At variance with Eq. (1), here phase dynamics depends
on the oscillators’ amplitudes. Equation (2) must be sup-
plemented with equations for the intensities Ix; Iy and

population inversion reservoirs Nx; Ny:

_I x ¼ ðNx þ �Ny � 1ÞIx; (3)

_I y ¼ ðNy þ �Nx � 1ÞIy þ 4�fA
ffiffiffiffi

Ix
p

ffiffiffiffi

Iy
q

cos�; (4)

_N x;y ¼ �½r� ð1þ Ix;y þ �Iy;xÞNx;y�: (5)

In Eqs. (2)–(5), the time derivatives are taken with respect
to a dimensionless time in units of the cavity decay time
tc ¼ 4:4 ns; � ¼ tc=tp ¼ 3:9� 10�5, where tp is the

population inversion decay time; r ¼ 1:2 is the pump
parameter; fA ¼ 1

2�

ffiffiffiffiffiffi

R3

p ¼ 5� 10�4 is the coupling

parameter, with R3 effective reflectivity of the feedback
cavity mirror (the diffraction efficiency of the Bragg cell is
included in R3); � ¼ 0:6 accounts for the cross saturation
in the active medium. Because the round-trip time in the
feedback cavity (3.3 ns) is much smaller than TR (14 �s),
the feedback is quasi-instantaneous. We have also numeri-
cally checked that the equations including delay produce
the same results as Eqs. (2)–(5). All the parameters’ values
are determined experimentally; no free-fitting parameter is
available. As can be seen in Fig. 2, numerical integration of
Eqs. (2)–(5) reproduces well the intensity dynamics
[Figs. 2(c) and 2(d)].
The comparison between the model and the experience

for the phase dynamics is summarized in Fig. 4. In
Fig. 4(a), we present the calculated average frequency

difference h _�
2�i as a function of ��. For 0 � �� < fA,

h _�i ¼ 0; i.e., the two frequencies are locked. This region

FIG. 4 (color online). (a) h _�=2�i vs�� obtained by numerical
integration of Eqs. (2)–(5). (b) Bifurcation diagram of � vs ��
obtained by numerical integration of Eqs. (2)–(5). The extrema
of � are plotted (in the region �� < fA, � is constant).
Insets: Calculated time series of �ðtÞ. (c) Standard deviation
�� of� vs ��. Lines, numerical integration; dots, experimental
data. The standard deviations are calculated for time series of
duration T ¼ 2:5 ms.

FIG. 3 (color online). Histograms of � for (a) �� ¼ 0:3fA,
(b) �� ¼ 2fA, and (c) �� ¼ 1:33fA. The center of the histo-
grams has been shifted to zero for clarity. (d) Time series of IðtÞ
corresponding to the histogram (c). Inset: Power spectrum of IðtÞ
centered at 200 MHz.
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corresponds to the standard Adler locking range. We see

that a region where h _�i ¼ 0, i.e., the two oscillators are
synchronized, exists beyond fA, up to a frequency that we
label as fB. Only in two narrow portions of this region,
around fA and fR, the relative phase unlocks. Further in-
sight can be gained by plotting the extrema X� of �ðtÞ vs
�� [Fig. 4(b)]. We find the following behavior: for
�� � fA, a stable stationary solution exists and phase
locking is obtained; for fA < �� < fB, no stable stationary
solution exists, �ðtÞ exhibits bounded, and possibly cha-
otic, temporal oscillations, so that average frequency syn-
chronization persists beyond the Adler boundary fA up to
fB; finally, for �� > fB, �ðtÞ drifts away, and the oscil-
lators are not synchronized anymore. We stress that in
Fig. 4(b) the extrema of �ðtÞ are not calculated on the
unwrapped phase. �ðtÞ is restricted to the interval
½��;��; therefore, an unbounded, drifting phase results
in a ‘‘sawtoothlike’’ time series, with abrupt vertical jumps
as �ðtÞ reaches the value of � [see the inset in Fig. 4(b)].
As a consequence, the values �� and � appear as local
extrema in the time series of an unbounded phase,
and indeed their presence is exactly the signature
of phase unbounding, as can be seen by comparing
Figs. 4(a) and 4(b). In Fig. 4(c) we compare the measured
value of the standard deviation �� of � to the computed
value from the model, as a function of ��. The experi-
mental points are calculated from histograms such as those
presented in Fig. 3. Our model produces a two-peak histo-
gram for the bounded phase [see Fig. 4(b)], but we have
verified numerically that this structure disappears if we
take into account the presence of noise revealed by the
histogram of Fig. 3(a). The theory and the experiment show
good agreement; the general trend of the theoretical curve
is well reproduced, and so is the behavior around fA and
fR. The existence and the boundaries of an average fre-
quency synchronization range extending beyond the Adler
phase-locking region are clearly evidenced. Note that no
experimental points are marked beyond fB, simply because
there the histograms are flat such as in Fig. 3(b). This
agrees with the model. In Fig. 4, the three particular values
fA, fB, and fR of the frequency detuning appear. First, the
narrow unlocking region beyond fA is due to the presence
of cross saturation between the two laser fields. If � is set
equal to zero in the model, the transition from phase lock-
ing to bounded phase dynamics occurs smoothly via a
Hopf bifurcation, and synchronization is not lost when
passing the bifurcation point fA. Second, we understand
the other narrow unlocking region around fR as an effect of
the resonance. Since the resonance is very sharp, when
exactly at �� ¼ fR the fluctuations are too strong for the
relative phase to remain locked. Finally, concerning fB, we
note that, contrary to fA, it is not a bifurcation point, but it
corresponds merely to the value of �� for which the
trajectory of the Ey field amplitude makes a complete

loop around the origin of the complex plane [8].

In conclusion, we have demonstrated the existence of a
synchronization region beyond the Adler equation’s
boundary fA. To the best of our knowledge, this constitutes
the first experimental demonstration of frequency locking
without phase locking in two coupled oscillators. We have
shown that between fA and fB, where phase locking is not
possible, the two oscillators are nevertheless able to main-
tain frequency locking. Equation (2) offers an heuristic
interpretation of this phenomenon: when �� > fA, the
coupling by itself is not sufficient to phase lock the oscil-
lators. Since �� is close to fR, the resonance effectively
enhances the coupling and restores synchronization via
the strong fluctuations in the oscillators’ amplitudes.
Experimentally, when fA > fR, so that no resonance is
available outside the Adler locking range, we did not find
any evidence of bounded phase dynamics. This confirms
the essential role of the resonance in establishing
synchronization.
For future study, a systematic experimental and theoreti-

cal characterization of the behavior of the system as the
detuning and the reinjected power are varied over some
orders of magnitude is desirable, in order to look for other
regions in the parameters’ space where a bounded phase
can be found. Indeed, it is known that a sufficiently large
amount of injected power can be a source of intensity
oscillations and instabilities, even when �� is inside the
locking range [15]. The available theoretical predictions of
bounded phase dynamics in injected class-B lasers deal
precisely with this ‘‘strong coupling’’ regime [7,8,16],
where instabilities are driven by the injected power amount
rather than by a resonance of the system. On the contrary,
no theoretical analysis of the phase dynamics is at present
available in the ‘‘intermediate coupling’’ regime [8] where
fA � fR. Finally, we note that our observations can be
relevant for semiconductor lasers also, and find application
in solid-state gyros [17]. It would also be interesting to
observe the effect of a resonant delayed coupling [18].
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