Boudah Talenka

La théorie de la relativité resteinte et générale

Ce petit livre a pour but de faire connaître, d’une manière aussi exacte que possible, la Théorie de la relativité à ceux qui s’intéressent à elle au point de vue général, scientifique et philosophique, mais qui ne possèdent pas l’appareil mathématique de la Physique théorique [1]. La lecture suppose à peu près des connaissances de bachelier et — malgré le peu d’étendue du livre — une bonne dose de patience et de force de volonté. L’auteur n’a pas ménagé sa peine pour présenter les idées fondamentales d’une manière aussi claire et simple que possible et, en gros, dans l’ordre et la connexion dans lesquels elles ont réellement pris naissance. Dans l’intérêt de la clarté, il m’a paru inévitable de me répéter souvent, sans me soucier le moins du monde de donner à mon exposé une forme élégante ; j’ai consciencieusement suivi l’avis du théoricien génial Ludwig Boltzmann, de laisser le souci d’élégance aux tailleurs et aux cordonniers. Je ne crois pas avoir caché au lecteur les difficultés inhérentes au sujet. J’ai, par contre, traité à dessein d’une façon sommaire les fondements empiriques et physiques de la théorie, afin que le lecteur qui n’est pas bien familiarisé avec la physique ne se trouve dans une situation semblable à celle du voyageur que les maisons empêchaient de voir la ville.

Puisse ce petit livre être un stimulant pour beaucoup de lecteurs et leur faire passer quelques heures agréables.

Sommaire

PREMIERE PARTIE : La théorie de la relativité restreinte

1. Le contenu physique des propositions géométriques

Sans doute avez-vous, cher lecteur, quand vous étiez jeune garçon, fait la connaissance du superbe édifice de la Géométrie d’Euclide, et vous vous rappelez peut-être, avec plus de respect que de plaisir, cette imposante construction sur le haut escalier de laquelle des maîtres consciencieux vous forçaient de monter pendant des heures innombrables. En vertu de ce passé vous traiteriez avec dédain toute personne qui regarderait même la moindre proposition de cette science comme inexacte. Mais ce sentiment de fière certitude vous abandonnerait peut-être, si l’on vous posait cette question « Qu’entendez-vous par l’affirmation que ces propositions sont vraies ? » À cette question nous voulons nous arrêter un peu.

La géométrie part de certaines notions fondamentales telles que le point, la droite, le plan, auxquelles nous sommes capables d’associer des représentations plus ou moins claires, et de certaines propositions simples (axiomes), que nous sommes disposés à regarder, en vertu de ces représentations, comme « vraies ». Toutes les autres propositions sont ensuite ramenées, au moyen d’une méthode logique dont nous nous sentons forcés de reconnaître la légitimité, aux axiomes, c’est-à-dire démontrées. Une proposition est, par conséquent, exacte ou « vraie », si elle est déduite des axiomes de la manière généralement admise. La question de savoir si telle ou telle proposition géométrique est « vraie » se ramène, par conséquent, à la question de savoir si les axiomes sont « vrais ». Mais on sait depuis longtemps que non seulement on ne peut répondre à cette dernière question au moyen des méthodes de la géométrie, mais qu’elle n’a en elle-même aucun sens. On ne peut pas demander s’il est vrai que par deux points il ne passe qu’une seule droite. On peut seulement dire que la Géométrie euclidienne traite de figures qu’elle appelle « droites » et auxquelles elle attribue la propriété d’être déterminées d’une manière univoque par deux de ses points. La notion de « vrai » ne s’applique pas aux énoncés de la géométrie pure, car par le terme « vrai » nous désignons, en dernier ressort, toujours la concordance avec un objet « réel ». Or, la Géométrie ne s’occupe pas du rapport entre ses notions et les objets de l’expérience, mais seulement du rapport logique de ces notions entre elles.

Que nous nous sentions quand même portés à regarder les propositions de la Géométrie comme « vraies », cela est facile à expliquer. Aux notions géométriques correspondent plus ou moins exactement des objets déterminés dans la nature, qui sont indubitablement la seule cause de leur naissance. Libre à la Géométrie, pour donner à sa construction la plus grande cohésion logique possible, de ne pas en tenir compte. L’habitude, par exemple, de nous représenter une droite par deux points marqués sur un corps pratiquement rigide est profondément enracinée dans notre esprit. Nous sommes, en outre, habitués à supposer que trois points se trouvent sur une droite si, par un choix approprié du point de vision, nous pouvons faire coïncider leurs positions apparentes.

Si maintenant, en suivant nos habitudes de penser, nous ajoutons aux propositions de la Géométrie euclidienne la seule proposition qui affirme qu’à deux points d’un corps pratiquement rigide correspond toujours la même distance (droite), quels que soient les changements de position que nous lui fassions subir, les propositions de la Géométrie euclidienne deviennent des propositions sur la position relative possible de corps pratiquement rigides [2]. La Géométrie ainsi complétée doit être traitée comme une branche de la Physique. Et c’est avec raison que la question de la « vérité » des propositions géométriques ainsi interprétées peut maintenant être posée, car on peut se demander si ces propositions sont aussi valables pour les objets réels que nous avons coordonnés aux notions géométriques. D’une façon quelque peu imprécise nous pouvons, par conséquent, dire que nous entendons par la « vérité » d’une proposition géométrique en ce sens sa validité dans une construction avec le compas et la règle.

La conviction de la « vérité » des propositions géométriques en ce sens repose naturellement sur des expériences assez imparfaites. Nous voulons pour le moment admettre la vérité de ces propositions ; nous verrons ensuite, dans la dernière partie de nos réflexions (quand nous traiterons de la Théorie de la relativité générale), qu’elle est limitée et dans quelle mesure elle l’est.

2. Le système de coordonnées

En vertu de l’interprétation physique de la distance, dont on vient de parler, nous sommes aussi en état de déterminer la distance de deux points sur un corps rigide au moyen de mesures. A cet effet nous avons besoin d’une droite (bâtonnet S), qui nous servira d’unité de mesure. Si maintenant A et B sont deux points d’un corps rigide, la droite qui les relie peut être construite d’après les lois de la Géométrie; on peut ensuite appliquer sur cette droite la droite S à partir de A autant de fois qu’il est nécessaire pour atteindre B. Le nombre des applications successives est la mesure de la droite AB. C’est sur ce procédé que repose toute mesure de longueur [3].

Toute description d’un lieu où se produit un événement, ou bien où se trouve un objet, consiste en ceci qu’on indique le point d’un corps rigide (corps de référence) avec lequel cet événement coïncide. Ce procédé n’est pas seulement employé dans la description scientifique, mais aussi dans la vie journalière. En analysant l’indication de lieu « à Paris, place du Panthéon », on trouve que sa signification est la suivante : Le sol est le corps rigide auquel se rapporte l’indication du lieu. Sur ce sol, « la place du Panthéon à Paris » est marquée par un point accompagné d’un nom avec lequel l’événement coïncide dans l’espace [4].

Ce procédé primitif d’indiquer les lieux peut être employé seulement pour les lieux à la surface des corps rigides et dépend de l’existence de points discernables sur cette surface. Voyons comment l’esprit humain s’affranchit de ces deux restrictions, sans que l’essentiel de l’indication des lieux subisse une modification. Si, par exemple, un nuage plane au-dessus de la place du Panthéon, le lieu de ce nuage, rapporté à la surface de la Terre, peut être déterminé en dressant verticalement sur cette place une perche qui atteint le nuage. La longueur de la perche, mesurée avec la règle, jointe à l’indication du lieu du pied de la perche fournit alors une indi cation parfaite du lieu. Cet exemple nous montre de quelle façon le perfectionnement de la notion de lieu s’est opéré.

  1. On prolonge le corps rigide, auquel se rapporte l’indication du lieu, de telle sorte que l’objet à localiser est atteint par le corps rigide complété.
  2. Pour caractériser un endroit on utilise le nombre au lieu de points marqués par un nom (ici la longueur de la perche mesurée avec la règle).
  3. On parle aussi de la hauteur du nuage même quand il n’y a pas de perche dressée pour l’atteindre. Dans notre cas on évalue la longueur que devrait avoir la perche pour atteindre le nuage, en faisant des observations optiques sur le nuage de différents points du sol et en tenant compte des propriétés de la propagation de la lumière.

On voit par cette considération qu’on obtient un avantage pour la description des lieux, si l’on réussit, par l’emploi de mesures numériques, à se rendre indépendant des points pourvus de noms qui existent sur le corps rigide auquel est rapportée l’indication des lieux. C’est ce qu’atteint la Physique dans ses mesures par l’emploi du système de coordonnées cartésien.

Ce système se compose de trois plans rigides perpendiculaires deux à deux et liés à un corps rigide. Le lieu d’un événement quelconque, par rapport au système de coordonnées, est (en substance) déterminé en indiquant les longueurs des trois perpendiculaires ou coordonnées (x, y, z) (voir la figure 2) qui peuvent être abaissées de ce lieu sur les trois plans. Les longueurs de ces trois perpendiculaires peuvent être déterminées par une des manipulations avec des baguettes rigides, manipulations prescrites par les lois et les méthodes de la Géométrie euclidienne.

Dans la pratique, les plans rigides constituant le système de coordonnées ne sont pas généralement réalisés ; de même les coordonnées ne sont pas réellement déterminées au moyen de constructions avec des baguettes rigides, mais d’une manière indirecte. Le sens physique de la détermination des lieux doit pourtant toujours être cherché conformément aux discussions précédentes, si l’on ne veut pas que les résultats de la Physique et de l’Astronomie se perdent dans le vague [5].

Nous avons donc le résultat suivant : Toute description d’événements dans l’espace nécessite l’emploi d’un corps rigide auquel ces événements doivent être rapportés. Cette relation suppose que les lois de la Géométrie euclidienne sont valables pour les « droites », où la « droite » est représentée physiquement par deux points sur un corps rigide.

3. Espace et temps dans la Mécanique classique

Si, sans trop me faire scrupule et sans entrer dans des explications détaillées, je définis la tâche de la Mécanique dans les termes suivants « La Mécanique doit décrire comment les corps changent de lieu avec le temps », je charge ma conscience de quelques péchés mortels contre le saint esprit de la clarté, et ces péchés doivent tout d’abord être dévoilés.

Il n’est pas clair ce qu’il faut ici entendre par « lieu » et « espace ». Supposons que, me trouvant devant la fenêtre d’un wagon d’un train en marche uniforme, je laisse tomber, sans lui imprimer une impulsion, une pierre sur le talus. Je vois alors (abstraction faite de l’influence exercée par la résistance de l’air) la pierre tomber en ligne droite. Mais un piéton qui observe le méfait du sentier constate que la pierre dans sa chute décrit une parabole. Je demande maintenant : Les « lieux » que la pierre parcourt sont- ils « réellement » situés sur une droite ou sur une parabole ? Que signifie ici, en outre, mouvement dans « l’espace » ? La réponse, d’après les réflexions du chapitre précédent, s’entend d’elle-même. Laissons tout d’abord de côté le terme obscur « espace » par lequel – avouons-le honnêtement – nous ne pouvons absolument rien nous représenter. À sa place nous mettons « mouvement par rapport à un corps de référence pratiquement rigide ». Les lieux par rapport au corps de référence (wagon ou sol) ont déjà été définis d’une façon détaillée dans le chapitre précédent. En mettant à la place de « corps de référence » la notion de « système de coordonnées », qui est utile pour la description mathématique, nous pouvons dire : La pierre décrit, par rapport à un système de coordonnées rigidement lié au wagon, une droite, mais par rapport à un système de coordonnées rigidement lié au sol une parabole. Cet exemple montre clairement qu’il n’y a pas de trajectoire en soi (C’est-à-dire une trajectoire que décrit le corps), mais seulement une trajectoire par rapport à un corps de référence déterminé.

Une description complète du mouvement est réalisée seulement quand on indique comment le corps change de place avec le temps, c’est-à-dire qu’il faut indiquer pour chaque point de la trajectoire à quel moment le corps s’y trouve. Ces indications doivent être complétées par une définition du temps telle que ces valeurs du temps puissent, en vertu de cette définition, être considérées en principe comme des grandeurs observables (résultats de mesures). Nous satisfaisons dans notre cas à cette exigence – en restant sur le terrain de la Mécanique classique – de la manière suivante. Nous imaginons deux montres constituées exactement de la même façon, dont l’une est possédée par l’homme qui se trouve devant la fenêtre du wagon et l’autre par l’homme qui se trouve sur la voie. Chacun d’eux établit à quel endroit, par rapport à son corps de référence, se trouve justement la pierre quand sa montre indique un temps déterminé. Nous renonçons ici à tenir compte de l’inexactitude due à la propagation de la lumière avec une vitesse finie. Nous en parlerons, ainsi que d’une autre difficulté qui se présente ici, plus loin d’une façon détaillée.

4. Le système de coordonnées de Galilée

On sait que la loi fondamentale de la mécanique de Galilée-Newton, connue sous le nom de loi de l’inertie, est exprimée dans les termes suivants : Un corps suffisamment éloigné d’autres corps persiste dans son état de repos ou de mouvement rectiligne et uniforme. Cette proposition n’énonce pas seulement quelque chose concernant les mouvements des corps, mais elle nous dit aussi quels corps de référence ou systèmes de coordonnées sont admissibles et peuvent être employés pour la description mécanique. Les corps auxquels la loi de l’inertie peut sûrement s’appliquer avec une grande approximation sont les étoiles fixes visibles. Mais si nous employons un système de coordonnées rigidement lié à la Terre, chaque étoile fixe décrit par rapport à lui pendant une journée (astronomique) un cercle d’un rayon immense, ce qui est en contradiction avec la loi de l’inertie. Si donc on veut conserver cette loi il ne faut rapporter les mouvements qu’à des systèmes de coordonnées relativement auxquels les étoiles fixes n’effectuent pas de mouvements circulaires. Un système de coordonnées dont l’état de mouvement est tel que relativement à lui la loi de l’inertie reste valable est appelé « système de coordonnées galiléen ». Ce n’est que pour les systèmes de coordonnées galiléens que les lois de Galilée-Newton sont valables.

5. Le principe de relativité (au sens restreint)

Nous partons de nouveau, pour être aussi clair que possible, de l’exemple du wagon du train qui marche avec une vitesse uniforme. Nous appelons son mouvement une translation uniforme (« uniforme », parce que sa vitesse et sa direction sont constantes et « translation », parce que le wagon change certes de place par rapport au talus, mais n’exécute pas de mouvement de rotation). Supposons un corbeau qui, relativement à un observateur sur le talus, vole à travers l’air en ligne droite et d’une manière uniforme. Pour un observateur dans le wagon en marche, le mouvement du corbeau sera à la vérité d’une vitesse et d’une direction différentes, mais également rectiligne et uniforme. En termes abstraits on peut dire : Si une masse m effectue un mouvement rectiligne et uniforme relativement à un système de coordonnées K, elle effectue aussi un mouvement rectiligne et uniforme relativement à un autre système K’, si ce dernier effectue relativement à K un mouvement de translation uniforme. De là il résulte, en tenant compte de ce qui a été établi dans le chapitre précédent, que si K est un système de coordonnées galiléen, tout autre système de coordonnées K’, qui effectue un mouvement de translation uniforme relativement à K, est également un système galiléen. Relativement à K’ les lois de la mécanique de Galilée-Newton sont aussi vraies que relativement à K.

Nous voulons faire un pas de plus dans la généralisation en énonçant la proposition suivante : si K’ est relativement à K un système de coordonnées qui effectue un mouvement uniforme sans rotation, les phénomènes de la nature se déroulent, relativement à K’, conformément aux mêmes lois générales que relativement à K. Nous appelons cet énoncé «principe de relativité » (dans le sens restreint).

Tant qu’on était convaincu que tous les phénomènes de la nature peuvent être représentés à l’aide de la Mécanique classique, on ne pouvait douter de la validité de ce principe. Mais avec le développement plus récent de l’Électrodynamique et de l’Optique, il devint de plus en plus manifeste que la Mécanique classique était une base insuffisante pour la description de tous les phénomènes physiques. Par là la question de la validité du principe de relativité se posa, et il ne paraissait pas exclu que la réponse pourrait être négative.

Toujours est-il qu’il existe deux faits généraux qui de prime abord parlent beaucoup en faveur de la validité du principe de relativité. En effet, même si la Mécanique classique ne fournit pas une base assez large pour la représentation théorique de tous les phénomènes physiques, il faut lui reconnaître une part importante de vérité, car elle explique avec une merveilleuse précision les mouvements réels des corps célestes. C’est pourquoi le principe de relativité doit aussi être valable avec une grande précision dans le domaine de la Mécanique. Qu’un principe d’une si grande généralité soit valable avec une telle exactitude pour un ordre de phénomènes, mais en défaut pour un autre, ceci est a priori peu probable.

Le second argument, sur lequel nous reviendrons encore plus tard, est le suivant. Si le principe de relativité (dans le sens restreint) n’était pas valable, les systèmes de coordonnées galiléens K, K’, K», ..., qui exécutent des mouvements uniformes les uns par rapport aux autres, ne seraient pas équivalents pour la description des lois de la nature. On serait alors porté à croire que les lois de la nature ne pourraient être formulées d’une manière particulièrement simple et naturelle que si, entre tous les systèmes de coordonnées galiléens, on choisissait comme corps de référence un d’entre eux (K 0 ) qui est animé d’un mouvement déterminé. Nous devrions alors à juste titre considérer celui-ci (à cause des avantages qu’il présente pour la description de la nature) comme étant « au repos absolu » et les autres systèmes galiléens K comme étant « en mouvement ». Si, par exemple, notre talus était le système K0, notre wagon du train serait un système K par rapport auquel des lois moins simples ne seraient valables que par rapport à K0. Cette moindre simplicité serait due au fait que le wagon K se meut (« réellement ») par rapport à K0. Dans ces lois générales de la nature, formulées par rapport à K, la grandeur et la direction de la vitesse du wagon devraient jouer un rôle. On devrait s’attendre, par exemple, à ce que la hauteur du son d’un tuyau d’orgue soit différente suivant que l’axe de ce tuyau est parallèle ou perpendiculaire à la direction du train. Or, en vertu de son mouvement autour du Soleil, notre Terre est comparable à un wagon se mouvant avec une vitesse d’environ 30 km/s. Nous devrions nous attendre à ce que, dans le cas où le principe de relativité ne serait pas valable, la direction du mouvement de la Terre intervienne à tout moment dans les lois de la nature et, par conséquent, à ce que les systèmes physiques dépendent dans leur comportement de l’orientation dans l’espace relativement à la Terre. Car, étant donné le changement de direction qui se produit au cours d’une année dans la vitesse de la révolution de la Terre, celle-ci ne peut pas être au repos, relativement au système hypothétique K0, pendant toute une année. Or, malgré les observations les plus attentives on n’a jamais pu constater une telle anisotropie dans l’espace physique terrestre, c’est-à-dire une non-équivalence physique entre les différentes directions.

Ceci est un argument de grand poids en faveur du principe de relativité.

6. Le théorème de l’addition des vitesses d’après la Mécanique classique

Supposons que le train dont nous avons déjà souvent parlé marche à une vitesse constante v et qu’un homme se déplace dans un des wagons dans le sens de sa longueur, c’est-à-dire dans le sens de la marche du train avec la vitesse w. Combien rapidement ou avec quelle vitesse W l’homme avance- t-il dans sa marche relativement au talus ? La seule réponse possible semble résulter de la réflexion suivante

Si l’homme restait immobile pendant une seconde, il avancerait, relativement au talus, d’une longueur v égale à la vitesse du wagon. Mais en réalité il parcourt dans cette seconde, relativement au wagon et par conséquent aussi relativement au talus, la longueur w, qui est égale à la vitesse de sa marche. Il parcourt donc au total pendant cette seconde, relativement au talus, la longueur

W = v + w.

Nous verrons plus tard que ce résultat, qui exprime le théorème de l’addition des vitesses de la Mécanique classique, ne peut pas être maintenu, que, par conséquent, la loi que nous venons d’écrire n’est pas tout à fait exacte. Pour le moment, cependant, nous voulons supposer qu’elle est vraie.

7. L’incompatibilité apparente de la loi de la propagation de la lumière et du principe de relativité

On trouve difficilement en Physique une loi plus simple que celle de la propagation de la lumière dans le vide. Tout écolier sait ou croit savoir que la lumière se propage en ligne droite avec une vitesse de 300 000 km/s. Nous savons en tout cas avec une grande exactitude que cette vitesse est la même pour toutes les couleurs ; car s’il n’en était pas ainsi, le minimum d’émission d’une étoile fixe ne s’observerait pas simultanément pour les différentes couleurs au moment où elle est éclipsée par son compagnon obscur. Par une considération analogue, se rattachant aux observations faites sur les étoiles doubles, l’astronome hollandais De Sitter a pu montrer que la vitesse de propagation de la lumière ne peut pas dépendre de la vitesse avec laquelle se meut la source lumineuse. La supposition que cette vitesse de propagation dépend de la direction « dans l’espace » est en soi improbable.

Bref, admettons que c’est avec raison que notre écolier accepte la loi simple de la propagation de la lumière avec une vitesse constante c (dans le vide). Qui croirait que cette loi simple a jeté le physicien consciencieux et réfléchi dans les plus grandes difficultés. Voici comment elles ont surgi.

Le phénomène de la propagation de la lumière doit naturellement, comme tout autre phénomène, être rapporté à un corps de référence rigide (système de coordonnées). Nous choisissons comme tel notre talus et nous supposons que l’air au-dessus de lui a été enlevé. Supposons envoyé le long du talus un rayon de lumière qui se propage par rapport à lui avec la vitesse c. Supposons encore que notre wagon se déplace sur la voie ferrée avec la vitesse v et dans le même sens dans lequel se propage le rayon de lumière, mais, bien entendu, avec une vitesse beaucoup plus petite que ce dernier. Nous demandons maintenant : Quelle est la vitesse de propagation du rayon lumineux relativement au wagon ? Il est facile de voir que la considération du chapitre précédent peut ici être appliquée, car l’homme qui se déplace le long du wagon du train en marche et dans le même sens que ce dernier joue le rôle du rayon lumineux. Sa vitesse W relativement au talus est ici remplacée par la vitesse de la lumière relativement à ce dernier ; w est la vitesse de la lumière cherchée relativement au wagon, dont la valeur est

w=c - v.

La vitesse de propagation du rayon lumineux relativement au wagon est, par conséquent, plus petite que c.

Mais ce résultat est en contradiction avec le principe de relativité exposé au chapitre 5. D’après ce principe, la loi de la propagation de la lumière dans le vide devrait, comme toute autre loi générale de la nature, être la même, soit qu’on choisisse le wagon, soit qu’on choisisse la voie ferrée comme corps de référence. Mais ceci paraît, d’après notre réflexion, impossible. Car, si tout rayon lumineux se propage, relativement au talus, avec la vitesse c, la loi de la propagation de la lumière devrait par là même être différente relativement au wagon, ce qui est en contradiction avec le principe de relativité.

En présence de ce dilemme il paraît inévitable, ou bien d’abandonner le principe de relativité, ou bien la loi simple de la propagation de la lumière dans le vide. Le lecteur qui a suivi attentivement notre exposé jusqu’à présent s’attendra certainement à ce que le principe de relativité, qui apparaît à l’esprit si naturel, si simple et presque inéluctable, soit maintenu, mais que la loi de la propagation de la lumière dans le vide soit remplacée par une autre plus compliquée, qui soit compatible avec le principe de relativité. Mais le développement de la physique théorique a montré que ce chemin n’était pas praticable. Les recherches théoriques extrêmement originales de H. A. Lorentz sur les phénomènes électrodynamiques et optiques présentés par les corps en mouvement montrèrent en effet que les expériences dans ce domaine conduisent nécessairement à une théorie des phénomènes électromagnétiques qui a comme conséquence inévitable la constance de la vitesse de la lumière dans le vide. C’est pourquoi les théoriciens de marque étaient plutôt portés à rejeter le principe de relativité, bien qu’on n’ait pu trouver aucune expérience qui la contredise.

C’est ici qu’intervint la théorie de la relativité. Par une analyse des notions physiques de temps et d’espace, elle montra qu’en réalité il n’y a aucune incompatibilité entre le principe de relativité et la loi de la propagation de la lumière et que, tout au contraire, en maintenant fermement et systématiquement ces deux principes on arrive à une théorie logique qui est à l’abri de toute objection. Nous appelons cette théorie, pour la distinguer de la théorie plus générale que nous traiterons plus loin, «Théorie de la relativité restreinte», dont nous allons exposer les idées fondamentales.

8. Sur la notion de temps en Physique

J e suppose que la foudre ait frappé la voie de notre chemin de fer en deux points A et B très distants l’un de l’autre, et j’affirme que ces deux éclairs ont été «simultanés». Si maintenant je vous demande, cher lecteur, si cette affirmation a un sens, vous me répondez avec conviction « Oui ». Mais si j’insiste et vous prie de m’expliquer d’une façon plus précise le sens de cette affirmation, vous constatez après quelque réflexion que la réponse à cette question n’est pas si simple qu’elle paraît au premier abord.

Après quelque temps il vous viendra peut-être à l’esprit la réponse suivante : « Le sens de cette affirmation est clair en soi-même et n’a pas besoin d’autre éclaircissement; certes, il me faudrait réfléchir pendant un certain temps, si j’étais chargé d’établir par des observations, si dans le cas concret les deux événements sont simultanés ou non ». Cette réponse ne me satisfait pas pour les raisons suivantes. Supposons qu’un météorologiste ait trouvé par des réflexions pénétrantes que la foudre doit toujours tomber simultanément aux points A et B ; il nous faudrait alors vérifier si ce résultat théorique correspond ou ne correspond pas à la réalité. Il en est de même pour toutes les affirmations physiques où la notion de « simultané » joue un rôle. Cette notion n’existe pour le physicien que s’il a trouvé la possibilité de vérifier, dans le cas concret, si elle est ou si elle n’est pas exacte. Nous avons donc besoin d’une définition telle de la simultanéité qu’elle nous donne une méthode au moyen de laquelle nous pouvons décider, dans le cas qui nous occupe, par des expériences, si les deux coups de foudre ont été simultanés ou non. Tant que cette exigence n’est pas satisfaite je suis comme physicien (et aussi comme non-physicien) victime d’une illusion, si je crois pouvoir attacher un sens à l’affirmation de la simultanéité. (Si vous ne m’accordez pas cela, cher lecteur, avec conviction, il est inutile de continuer.)

Après quelque temps de réflexion vous pourriez me faire la proposition suivante pour constater la simultanéité. On mesure la droite AB le long de la voie ferrée et l’on place au milieu de cette droite M un observateur muni d’un appareil (par exemple de deux miroirs inclinés à 90°) qui lui permet d’observer simultanément les deux points A et B. S’il aperçoit les éclairs en même temps, ils sont simultanés.

Je suis très satisfait de cette proposition, je ne peux cependant pas considérer la chose comme complètement éclaircie, parce que je me sens forcé à faire l’objection suivante : « Votre définition serait tout à fait correcte, si je savais déjà que la lumière, qui communique à l’observateur en M la perception des deux éclairs, se propage avec la même vitesse sur la droite A → M que sur la droite B → M. Une vérification de cette supposition ne serait possible que si l’on disposait déjà d’un moyen de mesurer le temps. On paraît donc se mouvoir ici dans un cercle vicieux ».

Après quelques réflexions, vous me jetterez avec raison un regard quelque peu dédaigneux en déclarant : «Je maintiens quand même ma définition de tout à l’heure, puisqu’en réalité elle ne présume rien de la lumière. La définition de la simultanéité ne doit remplir qu’une seule condition, de nous fournir dans chaque cas réel un moyen empirique pour décider si le concept à définir est confirmé ou n’est pas confirmé. Il est indiscutable que ma définition remplit cette condition. Affirmer que la lumière met le même temps à parcourir la droite A → M que la droite B → M n’est pas en réalité une supposition ou une hypothèse sur la nature physique de la lumière, mais une convention que je peux faire librement, pour parvenir à une définition de la simultanéité. »

Il est clair que cette définition peut être employée non seulement pour donner un sens exact à la simultanéité de deux événements, mais d’un nombre quelconque d’événements, quelle que soit la position relative des lieux où ils se produisent par rapport au corps de référence (ici le talus) [6]. Par là on arrive à une définition du « temps » en Physique. Qu’on imagine en effet placées aux points A, B, C de la voie ferrée (système de coordonnées) des horloges de même construction et réglées de telle sorte que les positions respectives de leurs aiguilles soient simultanées (dans le sens de plus haut). On entend alors par le « temps » d’un événement l’indication (position des aiguilles) de l’horloge immédiatement voisine de l’événement. À chaque événement est ainsi associée une valeur du temps qui est en principe observable.

Cette convention contient encore une hypothèse physique dont la validité ne peut être mise en doute, puisque aucune preuve empirique ne vient l’infirmer. Il est, en effet, supposé que toutes ces horloges « marchent au même rythme » si elles sont de même construction. En termes plus précis : Si deux horloges au repos en des endroits différents du corps de référence sont réglées de telle sorte que la position des aiguilles de l’une et la position des aiguilles de l’autre sont simultanées (dans le sens de plus haut), alors des positions égales d’aiguilles sont toujours simultanées.

9. La relativité de simultanéité

Jusqu’à présent notre réflexion avait en vue un corps de référence particulier, que nous désignions par la « voie ferrée ». Supposons un train très long se déplaçant sur cette dernière avec une vitesse constante v dans la direction indiquée sur la figure 1.

Figure 1Figure 1.

Les voyageurs de ce train auront avantage de se servir du train comme corps de référence rigide (système de coordonnées), auquel ils rapporteront tous les événements. Tout événement qui a lieu le long de la voie ferrée a aussi lieu en un point déterminé du train. La définition de la simultanéité peut aussi être formulée exactement de la même façon par rapport au train que part rapport à la voie. La question suivante se pose ainsi tout naturellement :

Deux événements (par exemples les deux éclairs A et B), qui sont simultanés par rapport à la voie, sont-ils aussi simultanés par rapport au train ? Nous montrerons tout à l’heure que la réponse doit être négative.

Quand nous disons que les éclairs A et B sont simultanés par rapport à la voie ferrée nous entendons par là que les rayons issus des points A et B se rencontrent au milieu M de la distance A-B située sur la voie. Mais aux événements A et B correspondent des endroits A et B dans le train. Soit M’ le milieu de la droite A-B du train en marche. Ce point M’ coïncide bien avec le point M à l’instant où se produisent les éclairs1, mais il se déplace sur le dessin vers la droite avec la vitesse v. Si un observateur dans le train assis en M’ n’était pas entraîné avec cette vitesse, il resterait d’une façon permanente en M et les rayons lumineux issus de A et de B l’atteindraient simultanément, c’est-à-dire que ces deux rayons se rencontreraient au point où il se trouve. Mais en réalité il court (vu du talus) vers le rayon de lumière venant de B, tandis qu’il fuit devant celui qui vient de A. Il verra, par conséquent, le rayon de lumière qui vient de B plus tôt que celui qui vient de A. Les observateurs qui se servent du train comme corps de référence doivent donc arriver à la conclusion que l’éclair B s’est produit antérieurement à l’éclair A. Nous aboutissons ainsi au résultat important suivant :

Des événements qui sont simultanés par rapport à la voie ferrée ne sont pas simultanés par rapport au train et inversement (relativité de la simultanéité). Chaque corps de référence (système de coordonnées) a son temps propre ; une indication de temps n’a de sens que si l’on indique le corps de référence auquel elle se rapporte.

Avant la Théorie de la relativité la Physique a toujours tacitement admis que l’indication du temps avait une valeur absolue, c’est-à-dire qu’elle était indépendante de l’état de mouvement du corps de référence. Mais nous venons de montrer que cette supposition est incompatible avec la définition si naturelle de la simultanéité ; si on la rejette, le conflit, exposé au chapitre 7, entre la loi de la propagation de la lumière dans le vide et le principe de relativité disparaît.

À ce conflit conduirait, en effet, la considération du chapitre 6, qui n’est plus valable. Du fait que le voyageur parcourait la distance w en une seconde, par rapport au wagon, nous avons conclu qu’il parcourait cette distance également en une seconde par rapport à la voie. Mais puisque, d’après les réflexions que nous venons de faire, la durée d’un événement déterminé par rapport au wagon ne peut pas être égale à la durée de cet événement par rapport à la voie considérée comme corps de référence, on ne peut pas soutenir que le voyageur en marchant a parcouru la distance w relativement à la voie dans un temps qui – mesuré de la voie – est égal à une seconde.

Le raisonnement du chapitre 6 repose encore sur une autre supposition qui, à la lumière d’une réflexion attentive, paraît arbitraire, bien qu’elle ait toujours été faite (tacitement) avant la construction de la Théorie de la relativité.

10. La relativité de la notion de distance spatiale

Considérons deux points déterminés du train [7] qui se déplace avec la vitesse v le long du talus, et demandons-nous quelle est leur distance. Nous savons déjà que pour mesurer une distance on a besoin d’un corps de référence, par rapport auquel la distance est mesurée. Le plus simple est d’utiliser le train même comme corps de référence (système de coordonnées). Un observateur dans le train mesure la distance en portant sa règle de mesure en ligne droite le long des planchers des wagons autant de fois qu’il est nécessaire pour que, parti de l’un des points marqués, il arrive à l’autre. Le nombre qui indique combien de fois il a fallu porter la règle représente la distance cherchée.

Il en est tout autrement quand il s’agit de mesurer cette distance en se plaçant sur le talus. La méthode suivante peut alors être employée.

Appelons les deux points du train, dont il s’agit de déterminer la distance et qui se déplacent le long du talus avec la vitesse v, A’ et B’. Nous demandons d’abord quels sont les points A et B du talus devant lesquels les points A’ et B’ passent à un moment donné t (par rapport au talus). Ces deux points A et B du talus peuvent être déterminés grâce à la définition du temps donnée au chapitre 8. On mesure alors la distance de ces points AB en portant un certain nombre de fois l’unité de mesure le long du talus.

Il n’est pas du tout prouvé a priori que cette dernière mesure donnera le même résultat que la première. La longueur du train, mesurée sur le talus, peut être différente de celle mesurée dans le train même. Cette circonstance soulève une seconde objection contre le raisonnement, en apparence si évident, du chapitre 6. Si le voyageur parcourt dans le wagon la distance w dans l’unité de temps, mesurée dans le train, cette distance n’est pas nécessairement égale à w quand elle est mesurée sur le talus.

11. La transformation de Lorentz

Les réflexions des trois derniers chapitres nous montrent que l’incompatibilité apparente de la loi de la propagation de la lumière avec le principe de relativité du chapitre 7 dérivait d’un raisonnement qui empruntait à la Mécanique classique deux hypothèses que rien ne justifie

  1. L’intervalle de temps qui sépare deux événements est indépendant de l’état de mouvement du corps de référence ;
  2. La distance spatiale de deux points d’un corps rigide est indépendante de l’état de mouvement du corps de référence.

Si l’on rejette ces deux hypothèses, le dilemme du chapitre 7 disparaît, parce que le théorème de l’addition des vitesses du chapitre 6 n’est plus valable. Nous voyons apparaître la possibilité de concilier la loi de la propagation de la lumière dans le vide avec le principe de relativité. Nous posons la question : Comment faut-il modifier le raisonnement du chapitre 6 pour faire disparaître la contradiction apparente entre ces deux résultats fondamentaux de l’expérience? Cette question conduit à une autre plus générale. Dans le raisonnement du chapitre 6 on considère des lieux et des temps par rapport au train et par rapport au talus. Comment déterminer le lieu et le temps d’un événement par rapport au train, quand on connaît le lieu et le temps de cet événement par rapport au talus ? Peut-on imaginer une réponse à cette question qui soit telle que la loi de la propagation de la lumière dans le vide ne contredise plus le principe de relativité ? En d’autres termes : Peut-on concevoir entre le lieu et le temps des événements, par rapport aux deux corps de référence, une relation telle que tout rayon lumineux possède la même vitesse de propagation c par rapport au talus et par rapport au train ? Cette question conduit à une réponse affirmative tout à fait certaine et à une loi de transformation des grandeurs spatio-temporelles d’un événement quand on passe d’un système de référence à un autre.

Avant de traiter ce sujet, nous voulons faire la réflexion accessoire suivante. Nous n’avons considéré jusqu’à présent que des événements se passant le long du talus qui, au point de vue mathématique, représentait une ligne droite. Mais on peut imaginer, de la façon indiquée au chapitre 2, ce corps de référence prolongé latéralement et vers le haut par une structure de baguettes de telle sorte qu’un événement qui a lieu n’importe où puisse être localisé par rapport à elle. On peut d’une manière analogue se représenter le train qui se déplace avec la vitesse v comme étant prolongé à travers tout l’espace, de sorte que tout événement, si éloigné soit-il, puisse aussi être localisé par rapport à cette seconde structure. Nous pouvons, sans commettre des erreurs fondamentales, faire abstraction du fait que ces structures, à cause de l’impénétrabilité des corps solides, devraient en réalité se détruire mutuellement. Dans chacune de ces structures nous imaginons trois plans rectangulaires désignés sous le nom de « plans de coordonnées » (« système de coordonnées »). Au talus correspond alors un système de coordonnées K et au train un système de coordonnées K’. Un événement quelconque est

Figure 2.

déterminé dans l’espace, par rapport à K, par trois perpendiculaires x, y, z abaissées sur les plans de coordonnées, et dans le temps par une valeur de temps t. Le même événement est déterminé dans l’espace et le temps, par rapport à K’, par les valeurs correspondantes x’, y’, z’, t’ qui, bien entendu, ne concordent pas avec x, y, z, t. Nous avons déjà montré plus haut d’une façon détaillée comment ces grandeurs doivent être considérées comme des résultats de mesures physiques.

Notre problème revêt manifestement la forme précise suivante : Quelles sont les valeurs x’, y’, z’, t’ d’un événement, par rapport à K’, si les grandeurs x, y, z, t du même événement, par rapport à K, sont données ? Les relations doivent être choisies de telle sorte que la loi de la propagation de la lumière dans le vide soit satisfaite, par rapport à K et à K’, pour un seul et même rayon lumineux (à vrai dire pour tout rayon lumineux).

Ce problème est résolu pour l’orientation relative dans l’espacedes systèmes de coordonnées, indiquée dans la figure 2, par leséquations :

x'=x - v t1 - v2 / c2,y'=y,z'=z,t'=t - v x / c21 - v2 / c2.

système d’équations que l’on désigne sous le nom de « transformation de Lorentz » (une dérivation simple de la transformation de Lorentz est donnée dans l’Appendice I).

Mais si, au lieu de la loi de la propagation de la lumière, nous avions pris comme base les suppositions tacitement admises par la vieille Mécanique du caractère absolu des temps et des longueurs, nous obtiendrions, au lieu des équations de transformation, les équations suivantes :

x'=x - v t,y'=y,z'=z,t'=t.

système souvent désigné sous le nom de « transformation de Galilée ». La transformation de Galilée peut être dérivée de la transformation de Lorentz, si l’on attribue à c dans cette dernière une valeur infinie.

Il est facile de voir par exemple suivant comment la loi de la propagation de la lumière dans le vide est, en vertu de la transformation de Lorentz, satisfaite aussi bien pour le corps de référence K que pour le corps de référence K’. Supposons qu’on envoie un rayon de lumière le long de l’axe positif des x et qu’il se propage conformément à l’équation

x=c t,

c’est-à-dire avec la vitesse c<. Conformément aux équations de la transformation de Lorentz, cette relation simple entre x et t entraîne une relation entre x’ et t’. En effet, en substituant dans la première et la quatrième équation de la transformation de Lorentz à x la valeur ct, on obtient

x'=(c - v) t1 - v2 / c2,t'=(1 - v / c) t1 - v2 / c2.

d’où l’on déduit immédiatement en divisant

x'=c t'.

C’est conformément à cette équation qu’a lieu, rapportée au système K’, la propagation de la lumière. On voit ainsi que la vitesse de propagation est aussi par rapport au corps de référence K’ égale à c. Il en est de même pour les rayons lumineux qui se propagent dans une direction quelconque. Ceci n’est pas étonnant, car les équations de transformation de Lorentz sont dérivées conformément à ce point de vue.

12. Le comportement des règles et des horloges en mouvement

Plaçons une règle de 1 m sur l’axe des x’ de K’ de telle sorte qu’une de ses extrémités (l’origine) coïncide avec le point x’ = 0 et l’autre (la fin) avec le point x’ = 1. Quelle est la longueur de la règle par rapport au système K ? Pour le savoir nous n’avons qu’à nous demander où se trouvent l’origine et la fin de la règle, par rapport à K, à un instant donné t du système K. Conformément à la première équation de la transformation de Lorentz, les valeurs de ces deux points, au temps t, sont

x(origine de la règle)=0 1 - v2 / c2 = 0x(fin de la règle)=1 1 - v2 / c2 = 1 - v2 / c2

rapport à K la règle se meut avec la vitesse v. Il s’ensuit, par conséquent, que la longueur d’une règle rigide qui se meut avec une vitesse v dans le sens de sa longueur est égale à 1 - v2 / c2 mètre.

La règle rigide en mouvement est, par conséquent, plus courte que la même règle au repos, et d’autant plus courte que son mouvement est plus rapide. Pour la vitesse v = c, 1 - v2 / c2 serait égale à zéro ; pour des vitesses plus grandes encore, le radical serait imaginaire. Nous en concluons que dans la Théorie de la relativité la vitesse c joue le rôle d’une vitesse limite, qui ne peut être atteinte par aucun corps réel, encore moins dépassée.

D’ailleurs, ce rôle de la vitesse c comme vitesse limite résulte déjà des équations mêmes de la transformation de Lorentz, car ces équations n’ont pas de sens si nous donnons à v une valeur supérieure à c.

Si nous avions, au contraire, considéré une règle sur l’axe des x, qui est au repos par rapport à K, nous aurions trouvé que sa longueur est, par rapport à K’, égale à 1 - v2 / c2; ceci est tout à fait conforme au principe de relativité qui est à la base de nos réflexions.

Il est a priori évident que nous devons tirer des équations de transformation quelques renseignements sur le comportement physique des règles et des horloges. Car les grandeurs x, y, z, t ne sont rien d’autre que les résultats de mesures qu’on doit obtenir au moyen de règles et d’horloges. Si nous avions pris pour base la transformation de Galilée, nous n’aurions pas trouvé de raccourcissement de la règle comme conséquence de son mouvement.

Considérons maintenant une horloge à secondes qui est au repos d’une façon permanente à l’origine (x’ = 0) de K’. Soient t’ = 0 et t’ = 1 deux battements successifs de cette horloge. La première et la quatrième équation de la transformation de Lorentz donnent pour ces deux battements

t = 0ett=11 - v2 / c2

Par rapport à K, l’horloge est animée de la vitesse v ; par rapport à ce corps de référence, l’intervalle de temps qui sépare deux de ses battements successifs n’est pas une seconde, mais de 11 - v2 / c2 secondes, c’est-à-dire un temps un peu plus long.

Par suite de son mouvement, l’horloge marche plus lentement que lorsqu’elle est au repos. Ici également la vitesse c joue le rôle d’une vitesse limite qu’il est impossible d’atteindre.

13. Le théorème de l’addition des vitesses. L’expérience de Fizeau

Comme nous ne pouvons dans la pratique communiquer aux horloges et aux règles que des mouvements qui sont lents comparés à la vitesse c de la lumière, les résultats du chapitre précédent peuvent à peine être directement confrontés avec la réalité. Comme, d’autre part, ils paraîtront au lecteur bien étranges, nous voulons tirer de la Théorie une autre conséquence, qui peut facilement être déduite des considérations précédentes et qui est brillamment confirmée par l’expérience.

Au chapitre 6 nous avons établi le théorème de l’addition des vitesses pour des vitesses de même direction d’après les hypothèses de la Mécanique classique. Ce théorème peut aussi être aisément déduit de la transformation de Galilée (chapitre 11). Au lieu du voyageur marchant dans le wagon, nous considérons un point se mouvant, par rapport au système de coordonnées K’, conformément à l’équation

x' = w t'

D’après la première et la quatrième équation de la transformation de Galilée, on peut exprimer x’ et t’ au moyen de x et de t, et l’on obtient ainsi

x = (v + w)t.

Cette équation n’exprime rien d’autre que la loi du mouvement du point par rapport au système K (du voyageur par rapport au talus); nous désignons cette vitesse par W, et nous obtenons, comme au chapitre 11,

(A) W = v + w.
Mais nous pouvons aussi bien faire ce raisonnement en nous appuyant sur la Théorie de la relativité. Il faut alors remplacer dans l’équation
x' = w t'.

x’ et t’ par x et t en utilisant la première et la quatrième équation de la transformation de Lorentz. Au lieu de l’équation (A), on obtient alors l’équation

(B)W=v + w1 + v wc2,

qui correspond au théorème de l’addition de vitesses de même direction selon la théorie de la relativité. La question se pose maintenant de savoir lequel de ces deux théorèmes est mieux ici accord avec l’expérience. Nous sommes renseignés à ce sujet par une expérience extrêmement importante faite, il y a plus d’un demi-siècle, par le physicien génial Armand Hippolyte Fizeau et répétée depuis par quelques-uns des meilleurs expérimentateurs, de sorte que son résultat ne laisse place à aucun doute. L’expérience concerne la question suivante : Supposons que la lumière se propage dans un liquide immobile avec une vitesse déterminée w. Avec quelle vitesse se propage-t-elle dans la direction de la flèche, le long du tuyau T (fig. 3) si celui-ci est parcouru par ledit liquide avec une vitesse v ?

Figure 3.

Conformément au principe de relativité, il faut en tout cas supposer que, par rapport au liquide, la lumière se propage toujours avec la même vitesse w, que le liquide soit ou ne soit pas en mouvement par rapport à d’autres corps. Par conséquent, la vitesse de la lumière par rapport au liquide et la vitesse de ce dernier par rapport au tuyau sont connues ; ce qu’on cherche c’est la vitesse de la lumière par rapport au tuyau.

Il est clair que nous nous trouvons ici de nou- veau en face du problème du chapitre 6. Le tuyau joue le rôle du talus ou du système de coordonnées K, le liquide celui du wagon ou du système de coordonnées K’, la lumière enfin celui du voyageur marchant dans le wagon ou du point mobile dans ce chapitre. Si l’on désigne par W la vitesse de la lumière par rapport au tuyau, elle nous est donnée par l’équation (A) ou l’équation (B) suivant que la transformation de Galilée ou celle de Lorentz correspond à la réalité.

L’expérience [8] décide en faveur de l’équation (B) déduite de la Théorie de la relativité, et même d’une façon très exacte. L’influence de la vitesse v du liquide sur la propagation de la lumière est représentée par la formule (B), d’après les dernières expériences tout à fait remarquables de Zeeman, avec une approximation supérieure à 1%.

Il faut cependant noter que, longtemps avant la construction de la Théorie de la relativité, H. A. Lorentz, suivant la voie purement électrodynamique, avait présenté une théorie de ce phénomène en utilisant certaines hypothèses sur la structure électromagnétique de la matière. Mais cette circonstance ne diminue en rien la force démonstrative de l’expérience comme expérience cruciale en faveur de la Théorie de la relativité. Car l’électrodynamique de Maxwell-Lorentz, sur laquelle était basée la première théorie, n’est nullement en contradiction avec la Théorie de la relativité. Cette dernière est plutôt sortie de l’électrodynamique comme un résumé remarquablement simple et une généralisation des hypothèses jadis indépendantes les unes des autres, sur lesquelles l’électrodynamique était édifiée.

14. La valeur heuristique de la Théorie de la relativité

Les idées exposées jusqu’à présent peuvent être brièvement résumées de la façon suivante. L’expérience nous a conduit à la conviction que, d’une part, le principe de relativité (restreinte) est vrai et que, d’autre part, la loi de la propagation de la lumière dans le vide doit être considérée comme égale à une constante c. En réunissant ces deux postulats nous avons obtenu la loi de transformation pour les coordonnées rectangulaires x, y, z et le temps t, qui constituent les processus de la nature, et le résultat ne fut pas la transformation de Galilée, mais (contrairement à la Mécanique classique) la transformation de Lorentz.

Dans cette suite d’idées, la loi de la propagation de la lumière, dont la supposition est justifiée par notre connaissance réelle, jouait un rôle important. Mais une fois que nous sommes en possession de la transformation de Lorentz, nous pouvons la réunir avec le principe de relativité et résumer la Théorie de la façon suivante :

Toute la loi générale de la nature doit être telle qu’elle se transforme en une loi de même forme quand on introduit, au lieu des variables d’espace-temps x, y, z, t du système de coordonnées primitif K, de nouvelles variables d’espace-temps x’, y’, z’, t’ du système de coordonnées K’, où la relation mathématique entre les grandeurs accentuées et les grandeurs non accentuées est donnée par la transformation de Lorentz. Plus brièvement : les lois générales de la nature sont invariantes relativement à la transformation de Lorentz.

Ceci est une condition mathématique précise que la Théorie de la relativité (restreinte) dicte à une loi de la nature, par là elle devient un auxiliaire précieux dans la recherche des lois générales de la nature. Si l’on découvrait une loi générale ne satisfaisant pas à cette condition, une au moins des deux suppositions fondamentales de la Théorie serait réfutée. Voyons maintenant à quels résultats généraux cette dernière a abouti jusqu’à présent.

15. Résultats généraux de la Théorie


Des considérations précédentes il résulte manifestement que la Théorie de la relativité (restreinte) est sortie de l’Électrodynamique et de l’Optique. Dans ces domaines elle n’a pas beaucoup modifié les énoncés de la théorie, mais elle a beaucoup simplifié l’édifice théorique, c’est-à-dire la dérivation des lois, et — ce qui est encore incomparablement plus important - considérablement diminué le nombre des hypothèses indépendantes les unes des autres sur lesquelles elle repose. Elle a conféré un tel degré d’évidence à la théorie de Maxwell-Lorentz que celle-ci aurait été généralement acceptée par les physiciens même si l’expérience avait parlé en sa faveur d’une façon moins convaincante.

La mécanique classique avait besoin d’une modification pour être en harmonie avec le postulat de la Théorie de la relativité restreinte. Cette modification cependant n’a trait, en substance, qu’aux lois des mouvements rapides, où les vitesses v de la matière ne sont pas trop petites comparées à la vitesse de la lumière. L’expérience nous montre que seuls les électrons et les ions sont animés de tels mouvements rapides ; pour d’autres mouvements les écarts des lois de la Mécanique classique sont trop faibles pour pouvoir être observés dans la pratique. Nous parlerons du mouvement des étoiles quand nous traiterons de la Théorie de la relativité générale. D’après la Théorie de la relativité, l’énergie cinétique d’un point matériel de masse m n’est plus donnée par l’expression mv2/2, mais par l’expression mc21 - v2/c2.

Cette expression tend vers l’infini quand la vitesse v tend vers la vitesse de la lumière c. La vitesse doit, par conséquent, rester toujours inférieure à c, si grandes que soient les énergies qu’on emploie à l’accélérer. En développant l’expression our l’énergie cinétique en série, on obtient

mc2 +mv22 +38mv4c2 +...

Quand v2c2 est petit par rapport à 1 le troisième de ces termes est toujours petit par rapport au second, le seul considéré dans la Mécanique classique. Le premier terme mc2 ne contient pas la vitesse, il ne faut donc pas en tenir compte, quand il s’agit seulement de savoir comment l’énergie d’un point matériel dépend de la vitesse. Nous parlerons plus loin de sa signification essentielle.

Le résultat de caractère général le plus important auquel a conduit la Théorie de la relativité restreinte a trait à la notion de masse. La Physique prérelativiste connaît deux principes de conservation d’importance fondamentale, le principe de la conservation de l’énergie et celui de la conservation de la masse; ces deux principes fondamentaux apparaissent comme complètement indépendants l’un de l’autre. Grâce à la Théorie de la relativité, ils ont été réunis en un seul principe. Nous allons exposer brièvement comment cette union s’est opérée et comment il faut l’interpréter.

Le principe de relativité exige que le principe de la conservation de l’énergie ne soit pas seulement valable par rapport à un système de coordonnées K, mais aussi par rapport à tout système de coordonnées K’ animé d’un mouvement de translation uniforme par rapport à K (en un mot par rapport à tout système de coordonnées « galiléen »). Pour le passage d’un tel système à un autre, la transformation de Lorentz sert de règle, contrairement à la Mécanique classique.

De ces prémisses et des équations fondamentales de l’Électrodynamique de Maxwell on peut tirer avec une nécessité absolue et par des considérations relativement simples la conclusion suivante : Un corps animé de la vitesse v, qui absorbe une quantité d’énergie E0 (l’énergie absorbée par rapport à un système de coordonnées en mouvement avec le corps) sous forme de rayonnement, sans que sa vitesse soit modifiée, éprouve un accroissement d’énergie égal à :

E01 - v2/c2

L’énergie cherchée du corps est alors donnée, en tenant compte de l’expression indiquée plus haut pour l’énergie cinétique, par

E0+mc21 - v2/c2

Le corps a donc la même énergie qu’un corps de masse m + E 0 / c 2 animé de la vitesse v. On peut par conséquent dire : Si un corps absorbe une énergie E 0 , sa masse inerte augmente de E 0 / c 2 ; la masse inerte d’un corps n’est pas constante, mais variable en proportion de la variation de l’énergie de celui-ci. La masse inerte d’un système de corps peut même être considérée directement comme la mesure de son énergie. Le principe de la conservation de la masse d’un système s’identifie avec celui de la conservation de l’énergie et n’est valable que si le système n’absorbe ni n’émet d’énergie. Si l’on écrit l’expression pour l’énergie sous la forme

16. La Théorie de la relativité restreinte et l’expérience

17. L’espace a quatre dimensions de Minkowski

DEUXIÈME PARTIE : La théorie de la relativité générale

18. Les principes de relativitérestreinte et générale

19. Le champ de gravitation

20. L’égalité de la masse inerte et de la masse pesante comme argument en faveur du postulat de la relativité générale

21. En quoi les fondements de la Mécanique classique et de la Théorie de la relativité restreinte sont-ils insuffisants ?

22. Quelques conséquences du principe de relativité générale

23. Le comportement des horloges et des règles de mesure sur un corps de référence en rotation

24. Continuum euclidienet non euclidien

25. Les coordonnées de Gauss

26. Le continuum d’espace-temps de la Théorie de la relativité restreinte considéré comme continuum euclidien

27. Le continuum d’espace-temps de la Théorie de la relativité générale n’est pas un continuum euclidien

28. Formulation exacte du principe de relativité générale

29. La solution du problème de la gravitation sur la base du principe de relativité générale

TROISIÈME PARTIE : Réflexions sur l’univers considéré comme un tout

30. Difficultés cosmologiques de la théorie de Newton

31. La possibilité d’un monde fini et cependant non limité

32. La structure de l’espace d’après la Théorie de la relativité générale

APPENDICES

I. Dérivation simple de la transformation de Lorentz

(Complément du Chapitre 11)

II. Le monde à quatre dimensions de Minkowski

(Complément du Chapitre 17)

III. La confirmation de la Théorie de la relativité générale par l’expérience

QUATRIÈME PARTIE : La relativité et le problème de l’espace

Notes et références

  1. On trouvera les fondements mathématiques de la Théorie de la relativité restreinte dans les Mémoires originaux de , et , publiés sous le titre Das Relativitätsprinzip dans la collection de monographies Fortschritte der mathematischen Wissenschaften (Teubner), ainsi que dans le livre détaillé de intitulé Das Relativitätsprinzip (Vieweg, Brunswick, ). La Théorie de la relativité générale ainsi que les auxiliaires de la théorie des invariants s’y rapportant sont exposés dans le Mémoire de l’auteur intitulé Die Grundlagen der allgemeinen Relativitätstheorie (Barth, 1916); ce Mémoire suppose une connaissance assez approfondie de la Théorie de la relativité restreinte.
  2. Par là on coordonne aussi à la ligne droite un objet naturel. Trois points A, B, C d’un corps rigide sont alors situés sur une droite si, A et C étant donnés, le point B est choisi de telle sorte que la somme des distances AB et BC est aussi petite que possible. Cette indication incomplète est ici suffisante.
  3. Il est ici supposé que la mesure est faite sans laisser de reste, c’est- à-dire que le résultat est un nombre entier. On s’affranchit de cette difficulté en employant des règles graduées, dont l’introduction n’exige en principe aucune méthode nouvelle.
  4. Une recherche plus détaillée pour montrer ce que signifie ici « coïncidence dans l’espace » n’est pas nécessaire ; car cette notion est claire en ce sens que, dans le cas concret particulier, des divergences d’opinion au sujet de sa validité ou non validité peuvent à peine se manifester.
  5. C’est seulement la Théorie de la relativité générale, exposée dans la seconde partie de ce livre, qui rend nécessaires un perfectionnement et une modification de ces conceptions.
  6. Nous supposons, en outre, que si trois événements A, B, C ont lieu en trois endroits différents de telle sorte que A et B ainsi que B et C sont simultanés (simultanés dans le sens de la définition de plus haut), le critérium de la simultanéité des deux événements A-C est également vérifié. Cette supposition est une hypothèse physique concernant la loi de la propagation de la lumière; elle doit être absolument vraie, si l’on veut avoir une possibilité de conserver la loi de la constance de la vitesse de la lumière dans le vide.
  7. Par exemple, le milieu du premier et celui du centième wagon.
  8. Fizeau trouva W = w + v (1 - 1/n2), où n = c/w représente l'indice de réfraction du liquide. D'autre part, comme v wc2 est petit par rapport à 1, on peut tout d'abord remplacer (B) par .

Publié aux éditions Dunod en .